The Future of Walnut Varieties

Pat J. Brown, UC Davis April 7th, 2022

Brown						
Wolfskill	2021	Leslie/McGranahar				
Durham	2016	Leslie/McGranahan				
Solano	2013	Leslie/McGranahan				
Ivanhoe	2010	Leslie/McGranahan				
Forde	2004	McGranahan/Leslie				
Gillet	2004	McGranahan/Leslie				
Sexton	2004	McGranahan/Leslie				
. Livermore	1999	McGranahan/Leslie				
Tulare	1993	McGranahan/Forde				
Cisco	1990	McGranahan				
Sunland	1979	Serr/Forde				
Howard	1979	Serr/Forde				
Chandler	1979	Serr/Forde				
Vina	1968	Serr/Forde				
Tehama	1968	Serr/Forde				
Serr	1968	Serr/Forde				
Pioneer	1968	Serr/Forde				
Pedro	1968	Serr/Forde				
Midland	1968	Serr/Forde				
Lompoc	1968	Serr/Forde				
Gustine	1968	Serr/Forde				
Chico	1968	Serr/Forde				
Amigo	1968	Serr/Forde				
Name	Year	Breeder(s)				

Who We Are

Pat J. Brown

Field/Greenhouse

Steven Lee

Tissue culture lab **Chuck Leslie**

Kristina McCreery

Molecular lab

Not pictured: Ivan Bermudez, Dave Cripe, Wes Hackett, Michael Smathers

Thanks to the California Walnut Board, farm advisors, and growers testing advanced selections

What We Do -- Crossing Walnuts

What We Do -- Evaluating Walnuts

Phenology & Orchard Performance

Nut & Kernel quality

What We Do – Maintaining germplasm

In vitro: 1000 cultures

Greenhouse & field: 50 acres

Breeding scheme

Increasing genetic gain with DNA information

Seedling blocks

3000 new nuts per year

Own-rooted Juglans regia

- Unreplicated
- 6' spacing

Selection blocks + Grower Trials

- Grafted onto Paradox
- Replicated

< 1%

• 20' spacing

DNA info

Parents of controlled crosses

Increasing genetic gain with DNA information

6000 new nuts per year

Seedling blocks

- Own-rooted Juglans regia
- Unreplicated
- 6' spacing

25%

Selection blocks + Grower Trials

- Grafted onto Paradox
- Replicated
- 20' spacing

DNA info

Parents of controlled crosses

What We've Done – Combining Lateral Bearing & Late Leafing

Wolfskill (03-001-2357)

How Wolfskill compares with existing cultivars

±							
Cultivar	Leafing date	Harvest	Kernel wt (g)	% kernel	% Extra- light	% Light	Pollenizer(s)
Ivanhoe	Very early	Very early	7.6	56	39	57	Serr, Payne
Payne/Ashley	Very early	Early	7.1	52	3	80	Solano, Vina, Ivanhoe
Vina	Early	Mid- early	7.0	51	3	47	Chandler, Howard, Tulare
Solano	Early	Mid- early	8.4	55	34	59	Chandler, Howard, Tulare
Wolfskill	Early	Mid	8.1	57	63	36	Chandler, Howard, Tulare
Durham	Mid	Mid	8.9	57	51	48	Chandler, Howard, Tulare
Tulare	Mid-late	Mid	8.1	55	8	80	not commonly used
Howard	Mid-late	Mid	7.3	51	24	58	Cisco, Franquette
Hartley	Mid-late	Late	6.9	46	19	64	Cisco, Franquette
Chandler	Mid-late	Late	6.8	49	54	36	Cisco, Franquette

What are our future goals?

What We Do – Marker-based-prediction

Lateral bearing of selfed Chandler trees with different marker genotypes

New assays: quantifying kernel color from image data

Sean McDowell, Mason Earles, Steven Lee

Human score

Quantifying color change during storage

Initial

4 months @ room temp.

Chilling hours/portions are not going to increase

We can't rely on Chandler forever

Early leafing genotypes require less chilling

Chilling <u>and</u> heat requirements determine walnut leafing/flowering dates

New assays: quantifying chill & heat requirements separately

Leafing date (chill + heat unit requirements)

Increasing shelf life and nutritional value of walnuts

Genetic potential in the breeding program: Phenology

(n = 1184 with 3+ years of data from 2017-2021; 3-5 year averages)

 Most selections have earlier leafing + earlier harvest than Chandler

Genetic potential in the breeding program: Phenology

(n = 1184 with 3+ years of data from 2017-2021; 3-5 year averages)

Genetic potential in the breeding program: Kernel Yield

(n = 1184 with 3+ years of data from 2017-2021; 3-5 year averages)

Kernel Yield (%)

Genetic potential in the breeding program: Kernel Yield

(n = 1184 with 3+ years of data from 2017-2021; 3-5 year averages)

Kernel Yield (%)

Attention walnut growers: WIP needs your help trialing advanced selections!

How it works:

- We consult with you to determine the selections that best fit your needs or interests.
- We provide graftwood, budwood, or finished trees.
- You grow them.
- We coordinate with you to collect samples and data from both the selections and reference cultivars.

What's in it for you:

• First access to future releases.

New beginning in 2022:

• Free finished trees!

Contact: Pat J. Brown, pjbrown@ucdavis.edu

Send your ideas, requests, complaints:

Pat J. Brown 2023 Wickson Hall Office: (530)-752-4288 pjbrown@ucdavis.edu