

New Rest-Breaking Treatments for Walnuts

Kat Jarvis-Shean, UC Cooperative Extension

Maciej Zwieniecki, UC Davis Dept of Plant Sciences Giulia Marino, UC Cooperative Extension Kevin Fort, Formerly UC Cooperative Extension Mat Talton, UC Cooperative Extension

> *Tri-County Walnut Day February 2, 2023*

Experimental results are easy to misunderstand out of the context of an in-person presentation.

Please contact the presenter at <u>kjarvisshean@ucanr.edu</u> if you have questions about this presentation.

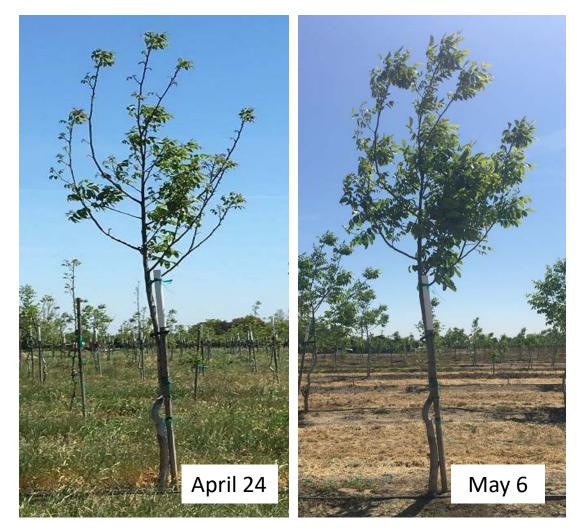
Erger and CAN-17 are not labelled for use as plant growth regulators.

Posting of these initial results here should not be construed as academic publication.

Outline of Talk

- Warmer winters Why it matters & What we can do about it.
- Approach: Heat, peek, treat, count
- Results & Production Implications

Conclusions So Far...


Budbreak timing

- Hydrogen Cyanamide @ 4% consistently different from water, regardless of ambient/low chill.
- Erger, Hydrogen Cyanamide @ 2%, CAN-17 different from water under low chill.

Percent budbreak

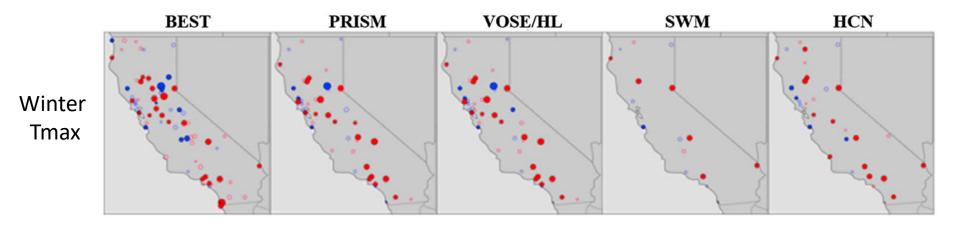
• Trend, though not always statistically significant, of increased budbreak with hydrogen cyanamide (2% and 4%)

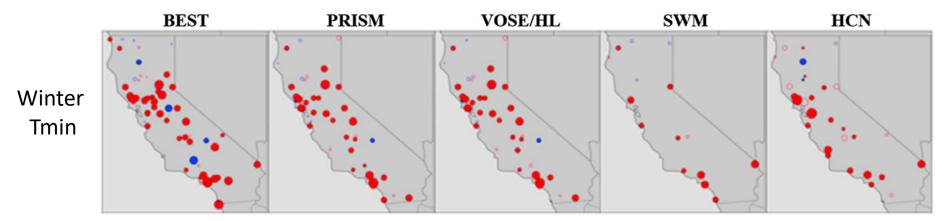
Why is winter chill important?

'Howard' walnuts, 3rd leaf, in Solano County, 2020.

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Photo: K. Jarvis-Shean

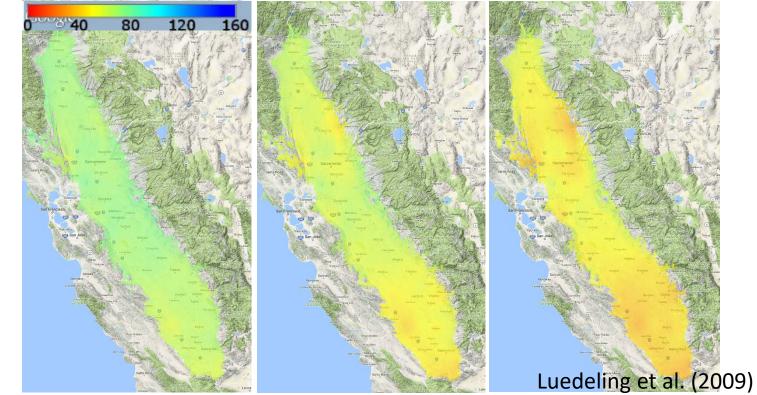

'Chandler' 5th leaf, April 28th, 2020, Sutter County.



Size variability, mature Howard, May 6th, Solano County. Photo: K. Jarvis-Shean

Central Valley winters have been getting warmer.

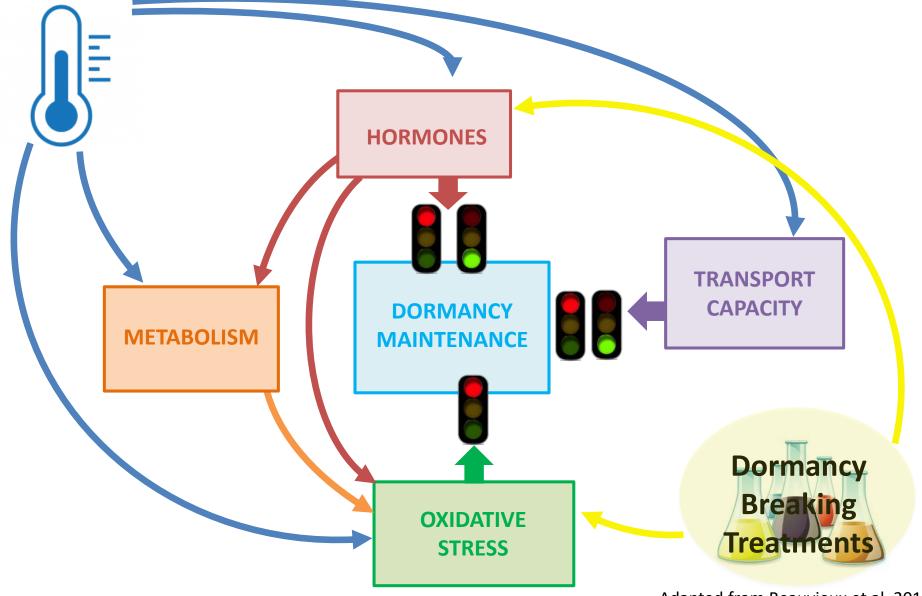
• • trend of 0.5 C/100 yrs


• • trend of 1.0 C/100 yrs

• • trend of 2.0 C/100 yrs

Wang et al. (2017)

Chill Projections 90% of years, for Mid, End of Century

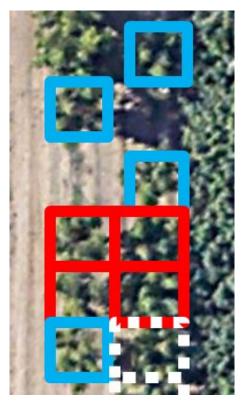

	Turn of the Century	Mid 21 st Century	End 21 st Century
N. Sac Valley	71	60 (↓ 15%)	51 (↓ 28%)
S. Sac Valley	70	58 (↓ 17%)	48 (↓ 31%)
N. San Joaquin	71	61 (↓ 14%)	51 (↓ 28%)
S. San Joaquin	64	51 (↓ 20%)	42 (↓ 34%)

If Chandler requires ~60 Chill Portions...

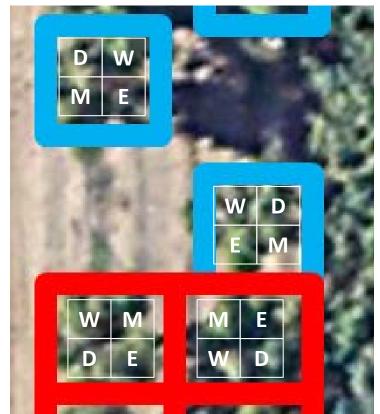
	Turn of the Century	Mid 21 st Century	End 21 st Century
N. Sac Valley	71	60 (↓ 15%)	51 (↓ 28%)
S. Sac Valley	70	58 (↓ 17%)	48 (↓ 31%)
N. San Joaquin	71	61 (↓ 14%)	51 (↓ 28%)
S. San Joaquin	64	51 (↓ 20%)	42 (↓ 34%)
UC CE Univ Agricu	Pare hard		

Dormancy pathways and their interactions

Adapted from Beauvieux et al, 2018

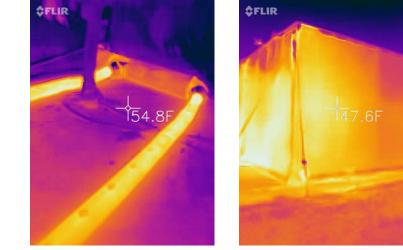

Outline of Talk

- Warmer winters Why it matters & What we can do about it.
- Approach: Heat, peek, treat, count
- Results & Production Implications



Experimental Design: Split Plot

Main: Heat / Unheated by Tree


Sub: Chemical Treatment by Scaffold

Experimental Design: Heated Trees

Heated Open Top Simulated Temperature Upshift in the Field (HOT STUF).

Infrared image of heating with convection tubes in tree compartment.

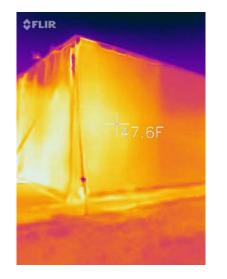
Experimental Design: Rest Breakers

Split Plot Design, Rest Breakers as Sub Effect

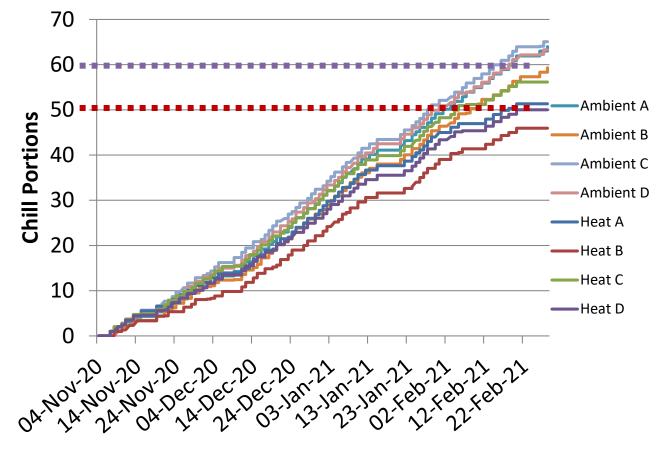
Treatment	Rate	Adjuvant	Rate	Date
Water (Control)	n/a	n/a	n/a	3/3/2021
Mocksi [®] (CPPU)	15 ppm	PentraBark	0.2%	3/4/2021
Erger® (calcium (4.7%), nitric nitrogen (5.8%), ammonium nitrogen (3.1%), urea (6.1%))	6% (by vol)	Calcium nitrate (Yara Liva)	83 lb/100 gal	3/5/2021
Dormex [®] (Hydrogen cyanamide)	4%	Latron	0.25%	3/6/2021

BellSpray Inc R & D JR-203S CO2 backpack sprayer (3 liter bottles) 150 gallons per acre equivalent (sprayed to drip), max 538 mL per scaffold,

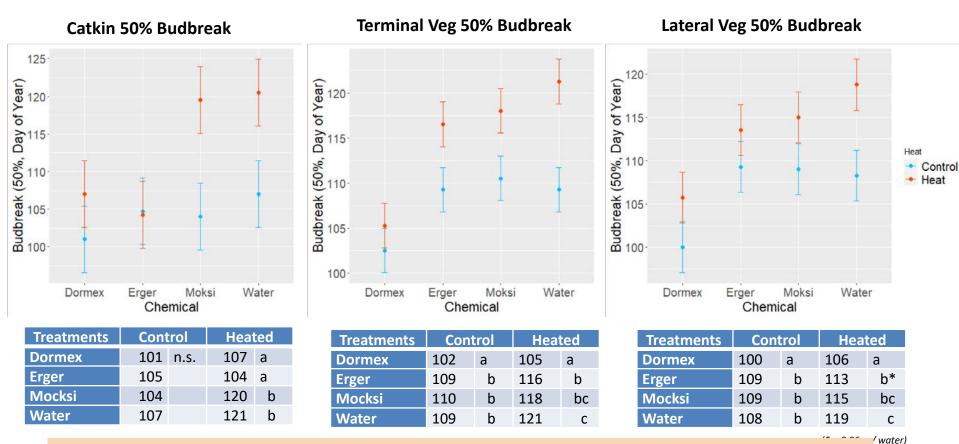
- 15 catkin buds
- 30 terminal buds (Veg & Female)
- 30 lateral buds (V & F)
- ~1/3 at 3 heights



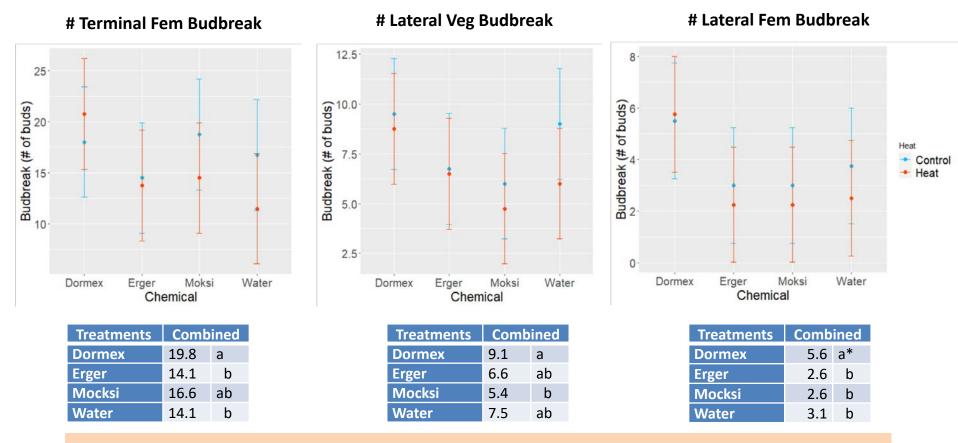
- Timing 10%, 50%, 90%
- Duration 10% to 90%
- # of buds that broke
- Diff by heating, chemical
- Fruit Set


UC CE University of California Agriculture and Natural Resources Cooperative Extension

Results: Heating

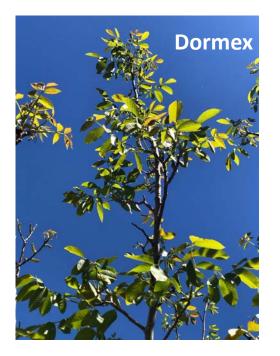

Goal:

↑ 3° F, \downarrow ~20% chill (50 CP) Heat ON between 39- 52° F (Window where ↑ 5° F eliminates or reduces modeled chill)

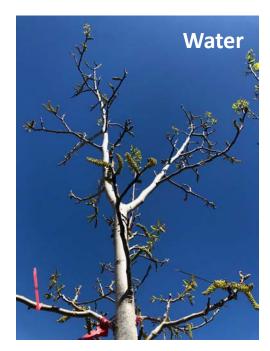

Results: Budbreak Timing

Hydrogen Cyanamide moves budbreak earlier, regardless of sufficient/insufficient chill. Erger moves budbreak earlier when chill is insufficient.

Results: Number of Buds Break



Note: Lat Fem - Lat Veg interaction Possible mild decrease in budbreak from Erger. Increase in budbreak with hydrogen cyanamide. Need to monitor more, and more robust lateral buds next year.

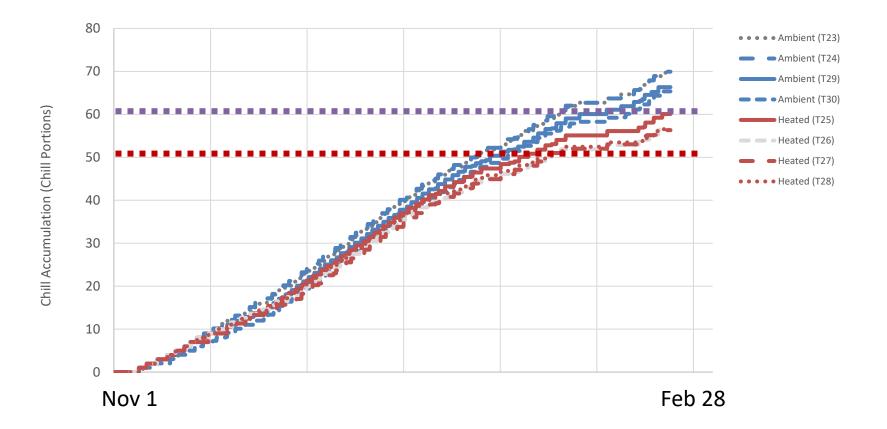

E Agriculture and Natural Resources Cooperative Extension

Conclusions 2020-2021

- Hydrogen cyanamide @ 4% consistently different from water, regardless of ambient/low chill.
- Erger only different from water under low chill.

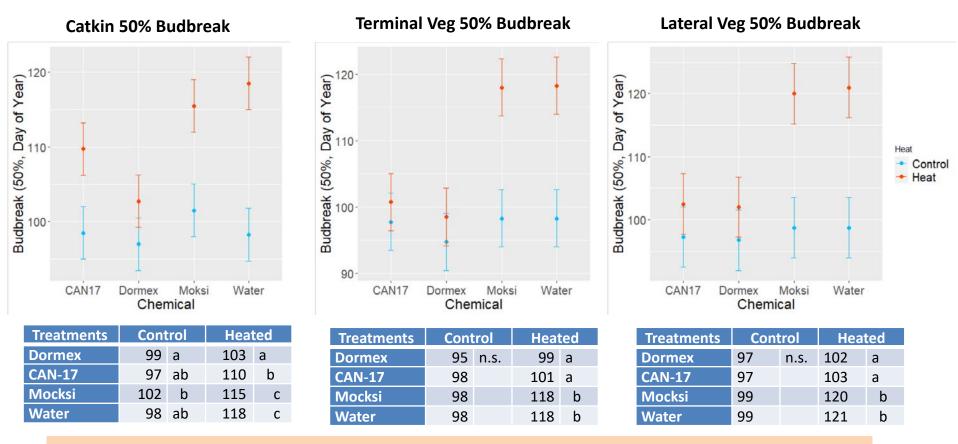
UC CE University of California Agriculture and Natural Resources Cooperative Extension

Rest Breakers 2021-2022


Split Plot Design, Rest Breakers as Sub Effect

Treatment	Rate	Adjuvant	Rate	Date	
Water (Control)	n/a	n/a	n/a	3/7/2021	
Mocksi [®] (CPPU)	20 ppm	PentraBark	0.2%	3/9/2021	
CAN-17	20% (by vol)	Rainier EA	0.1%	3/8/2022	
Dormex [®] (Hydrogen cyanamide)	2%	Latron	0.25%	3/9/2021	

BellSpray Inc R & D JR-203S CO2 backpack sprayer (3 liter bottles) 150 gallons per acre equivalent (sprayed to drip), max 538 mL per scaffold,



Chill Accumulation, 2021-2022

Budbreak Timing 2022

Hydrogen Cyanamide & CAN-17 move budbreak earlier under insufficient chill.

Budbreak Duration, % Total 2022

	Те	rminal V	/egetativ	ve	Lateral Vegetative				
	Control		Heated		Control		Heated		
Water	15.2	n.s.	23.0	а	12.5	n.s.	21.5	n.s.	
Mocksi	16.5		17.7	а	13.5		19.5		
CAN-17	12.8		17.2	а	10.5		15.5		
Dormex	9.5		12.7	b	8.8		15.7		

Duration of budbreak (10% to 90%) by bud type in 2022.

Percent of total budbreak by bud type in 2022. *p = 0.0799

	Male			Terminal Vegetative				Lateral Vegetative				
	Con	trol	Heated		Control		Heated		Control		Heated	
Water	100	n.s.	96	b*	92	n.s.	79	b	45	n.s.	25	n.s.
Mocksi	100		99	а	94		75	b	39		29	
CAN-17	98		94	b	91		78	b	49		29	
Dormex	100		100	а	92		92	а	41		34	

Conclusions So Far...

Budbreak timing

- Hydrogen Cyanamide @ 4% consistently different from water, regardless of ambient/low chill.
- Erger, Hydrogen Cyanamide @ 2%, CAN-17 different from water under low chill.

Percent budbreak

• Trend, though not always statistically significant, of increased budbreak with hydrogen cyanamide (2% and 4%)

Future Plans

- 2022-2023
 - CDFA Greenhouse Trial
 - Grower orchard & Nickels Soils Lab for yield data
 - Continue heated UCD trees 1, 2, & 4% Dormex
- 2023-2025
 - CDFA Greenhouse Trial
 - Grower orchard & Nickels Soils Lab for yield data

NEED Southern San Joaquin Grower Site

Thank you! Questions?

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

BIG THANKS to the Hanson lab, esp Brad & Seth. And Dave w/ WIP. Also Flo, Themis & Jim. & AlzChem, Erger & Simplot

